
 “ ” ISSN 1310-5833

 – 1’2014
30

SPEED OPTIMIZATION OF MATLAB CODES

Hristo Zhivomirov, Todor Vachev, Iva Todorova

INTRODUCTION

 The modern ways of information and signal

processing by means of computers and other

microprocessor systems, require that computing

process is held in real time. For this reason the

computational speed of these systems is one of

their most important parameters.

 There are two main approaches for enhancing

the execution of program codes. The first is

hardware improvement, evidence for which is the

constant increase of the clock speed of

microprocessor systems and an increase in the

processed bits per clock. The second approach is

to optimize the code itself, by using enhanced

algorithms or the specific advantages of the given

programming environment. In the present paper

the second approach is taken in consideration

with Matlab® implementation. Some of the

reviewed methods are general to all high-level

programming languages, others are specific for

Matlab®.

 The main source of delay is assumed to be a

CPU performance, i.e. the codes is said to be a

“CPU-bounded”, so more of the described

strategies is in this direction. A good reference

about the “memory-bounded” codes is [1].

METHODS FOR OPTIMIZATION

 Six optimization methods have been reviewed,

each one of them supported by two examples –

those with index “a)” show the non-optimized

Matlab® code, and those with index “b)” show

the optimized one.

1. Memory Preallocation

 The first and most commonly used method for

optimization, producing significant results is

memory preoallocation [2, 3, 4]. The avoiding of

fragmentation, especially with big arrays of data,

leads to a quick access to them, which enhances

the execution of the program code. In the

Matlab® programming environment there are

two commands used for memory preallocation:

zeros – to create a matrix filled with zeros and

char – to create a string array filled with symbols.

Example 1 :

clear, clc, close all

for k = 1:1000

 a(k) = k^2;

end

Example 1b:

clear, clc, close all

a = zeros(1, 1000);

for k = 1:1000

 a(k) = k^2;

end

2. Vectorization

 Significant attention in Matlab® is given to

matrices and their one-dimensional version –

vectors. The name of the programming

environment itself means Matrix Laboratory [5].

Matlab® offers easy-to-use method for vector

generation [4, 5]:

vector = 1:1:1000;

Abstract: In the present paper algorithmic and software approaches are discussed, providing speed optimization

of the computational process in the execution of Matlab® codes. A major consideration is made on the loop

structures, which are an essential source of delay. The statement is supported by examples that give a concrete

idea of the used optimization approaches. At the end of the publication the results of the examples execution are

summarized by means of tabular and graphic representation of the absolute and relative codes speed up.

Keywords: Matlab, optimization, program code, speed

 “ ” ISSN 1310-5833

 – 1’2014
31

or the linspace function:

vector = linspace(1, 1000, 1000);

 The generation of vectors (vectorization) and

matrices with special commands [2, 3, 4], instead

of the most commonly used loop-structures

results in a significant enhancement of the

execution process of the code.

Example 2 :

clear, clc, close all

k = 0;

for t = 0:pi/1000:2*pi

 k = k + 1;

 y(k) = sin(t);

end

Example 2b:

clear, clc, close all

t = 0:pi/1000:2*pi;

y = sin(t);

3. Loops exchange

 Another way to enhance the execution process

is a simple exchange of nested loops [6].

Example 3a:

1 clear, clc, close all

2

3 a = [];

4

5 for n = 1:1000

6

7 for k = 1:5

8 a(n, k) = n*k;

9 end

10

11 end

Example 3b:

1 clear, clc, close all

2

3 a = [];

4

5 for n = 1:5

6

7 for k = 1:1000

8 a(k, n) = n*k;

9 end

10

11 end

 Here the optimization is achieved thanks to

the difference in the number of iterations of some

code lines as is shown in Tab. 1. As a rule of

thumb, the outer loop should have less iterations

than the inner one.

Table 1. Number of iterations (executions) of

code lines in examples 3a) and 3b)

Line Number of iterations

 Example 3) Example 3b)

1 1 1

3 1 1

5 1 1

7 1000 5

8 5000 5000

9 5000 5000

11 1000 5

Total iterations:12003 10013

4. Extract a constant out of a loop

 Another approach is based on the extracting of

specific operations outside the body of the loop.

This approach does not confine to nested loops

(as is shown in the example) but holds true also

for single loops. The diversity of the method is

the algorithmic optimization, which is based on

the full revision of the used algorithm, especially

if there are conditional statements and loop

structures [6].

Example 4 :

clear, clc, close all

for k = 1:1000

 for n = 1:1000

 a(k, n) = k*5+n;

 end

end

Example 4b:

clear, clc, close all

for k = 1:1000

 b = k*5;

 for n = 1:1000

 a(k, n) = b+n;

 end

 end

5. Exchange of computational operations

 It is known that in the computational

processes the different mathematical operations

 “ ” ISSN 1310-5833

 – 1’2014
32

have different priorities [6, 7]. The less priority

the operation has, the more time it needs to be

executed [8]. Therefore it is preferable to use

operations with a higher priority.

Example 5 :

clear, clc, close all

for k = 1:1000

 a(k) = k/10;

end

Example 5b:

clear, clc, close all

for k = 1:1000

 a(k) = k*0.1;

end

6. Assign a constant into a variable

 Additional enhancement of the execution of

the program code can be achieved by exchanging

all constants with variables [6].

Example 6 :

clear, clc, close all

for k = 1:1000

 a(k) = k*1.4142;

end

Example 6b:

clear, clc, close all

c = 1.4142;

 for k = 1:1000

 a(k) = k*c;

end

 Other techniques for increasing the

performance of the Matlab® codes are [3]:

 - splitting the large Matlab® scripts into

smaller ones in the form of file-functions since

they are generally faster;

 - avoiding the change of the class or the size

of an existing variables since it takes extra time

to process;

 - using appropriate logical operators like

“short-circuit” OR (||) and AND (&&);

 - avoiding the execution of large processes in

the background while running a program in

Matlab®.

 One must be aware of the effect of some

techniques since they can affect the amount of

used memory or the speed of computation if the

code is “memory bounded” [1].

CONCLUSION

 The examples have been tested on three

different computer configurations and the

execution time of every test is reported by the

Matlab® commands tic and toc [2, 3] and the

Matlab® Profiler [9]. The specifications of the

configurations are shown in Table 2. The results

from the tests are shown in Tables 3, 4, 5 and

Fig. 1.

 Due to the differences in the execution time

for every example, the tests were performed 5

consecutive times, and the average time for every

example is taken. The time of execution of a

given code depends on the computer

configuration (mainly by the clock speed of the

processor). Despite that the coefficient of relative

speed-up (in %) gives an opportunity to

objectively compare the results.

 One can note that the result of example 4 with

the first configuration is due to the slow access of

the DDR1 RAM memory and 32-bit operation

system. Also it must be noted the big difference

(ten times) between the execution times of

Example 1a) with configuration 1 and 3. This is

an evidence for the effect of the hardware

acceleration on the speed of computation.

Table 2. Performance specifications of the used

computer configurations

Configuration 1 2 3

OS
Windows

XP 32 bit

Windows

7 64 bit

Windows

7 64 bit

Processor

AMD

Athlon

64

Processor

3000+

1,81 GHz

AMD

Turion II

P560

Dual-

Core

Processor

2,50 GHz

AMD

FX-8150

Bulldozer

Eight-

Core

Processor

4,60 GHz

RAM
DDR

1 GB

DDR3

4 GB

DDR3

16 GB

Matlab R2010b R2010b R2010b

 “ ” ISSN 1310-5833

 – 1’2014
33

Table 3. Time parameters from tests with the

shown examples on configuration 1

non opt
t

,

ms

opt
t

,

ms

non opt opt
t t t

,

ms

100
non opt

t

t
, %

1 4,5 0,026 4,47 99,4

2 27 0,2 26,8 99,2

3 13,3 3,2 10,1 75,9

4 9010 8881 129 1,43

5 4,1 3,7 0,4 9,7

6 5,1 5 0.1 1,9

Table 4. Time parameters from tests with the

shown examples on configuration 2

non opt
t

,

ms

opt
t

,

ms

non opt opt
t t t

,

ms

100
non opt

t

t
, %

1 4,2 0,05 4,15 98,8

2 24 0,37 23,63 98,5

3 11,9 4,4 7,5 63

4 2084 1948 136 6,5

5 4,5 4,1 0,4 8,8

6 3,9 3,8 0,1 2,5

Table 5. Time parameters from tests with the

shown examples on configuration 3

non opt
t

,

ms

opt
t

,

ms

non opt opt
t t t

,

ms

100
non opt

t

t
, %

1 0,45 0,015 0,435 96,67

2 0,95 0,062 0,888 93,47

3 1,85 0,49 1,36 73,51

4 472 406 66 13,98

5 0,43 0,39 0,04 9,3

6 0,42 0,37 0,05 11,91

1 2 3 4 5 6
0

20

40

60

80

100

Method

S
p

ee
d

-U
p

,
%

Obtained Speed-Up for every optimization method

Configuration 1

Configuration 2

Configuration 3

Fig. 1. Graphical representation of obtained

speed-up by every optimization method

 In conclusion one can say that by using those

easily applicable methods a serious enhancement

of the execution speed of the codes can be

managed. Many of the methods can be used by

other programming environments/languages.

REFERENCE

[1] S. McGarrity. Maximizing Code Performance

by Optimizing Memory Access. The MathWorks

News & Notes, June 2007.

[2] P. Getreuer. Writing Fast Matlab Code,

http://www.getreuer.info/tutorials, 2009.

[3] Techniques for improving performance,

http://www.mathworks.com/help/matlab/matlab_

prog/techniques-for-improving-performance.html

(Accessed Dec. 2014)

[4] Vectorization,

http://www.mathworks.com/help/matlab/matlab_

prog/vectorization.html (Accessed Dec. 2014)

[5] J. Tonchev. Matlab 7: part I (in Bulgarian).

Sofia, Technika, 2007.

[6] A. Angelov. The Programming – simple and

complex (in Bulgarian). Sofia, Technika, 1986.

[7] H. Warren. Hacker’s Delight. Boston,

Addison-Wesley, 2012.

[8] S. Oliveira, D. Stewart. Writing Scientific

Software: A Guide to Good Style. Cambridge,

Cambridge University Press, 2006.

[9] Profiling for Improving Performance,

http://www.mathworks.com/help/matlab/matlab_

prog/profiling-for-improving-performance.html

(Accessed Dec. 2014)

.

Contacts:

Assist. Prof. M.Sc. Eng. Hristo Zhivomirov,

Dept. of Theory of Electrical Engineering

and Measurements,

Technical University-Varna,

Str. Studentska 1,

e-mail: hristo_car@abv.bg;

